summaryrefslogtreecommitdiffstats
path: root/node_modules/big.js/big.mjs
diff options
context:
space:
mode:
Diffstat (limited to 'node_modules/big.js/big.mjs')
-rw-r--r--node_modules/big.js/big.mjs924
1 files changed, 924 insertions, 0 deletions
diff --git a/node_modules/big.js/big.mjs b/node_modules/big.js/big.mjs
new file mode 100644
index 0000000..5fe5f20
--- /dev/null
+++ b/node_modules/big.js/big.mjs
@@ -0,0 +1,924 @@
+/*
+ * big.js v5.2.2
+ * A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
+ * Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
+ * https://github.com/MikeMcl/big.js/LICENCE
+ */
+
+
+/************************************** EDITABLE DEFAULTS *****************************************/
+
+
+ // The default values below must be integers within the stated ranges.
+
+ /*
+ * The maximum number of decimal places (DP) of the results of operations involving division:
+ * div and sqrt, and pow with negative exponents.
+ */
+var DP = 20, // 0 to MAX_DP
+
+ /*
+ * The rounding mode (RM) used when rounding to the above decimal places.
+ *
+ * 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN)
+ * 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP)
+ * 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN)
+ * 3 Away from zero. (ROUND_UP)
+ */
+ RM = 1, // 0, 1, 2 or 3
+
+ // The maximum value of DP and Big.DP.
+ MAX_DP = 1E6, // 0 to 1000000
+
+ // The maximum magnitude of the exponent argument to the pow method.
+ MAX_POWER = 1E6, // 1 to 1000000
+
+ /*
+ * The negative exponent (NE) at and beneath which toString returns exponential notation.
+ * (JavaScript numbers: -7)
+ * -1000000 is the minimum recommended exponent value of a Big.
+ */
+ NE = -7, // 0 to -1000000
+
+ /*
+ * The positive exponent (PE) at and above which toString returns exponential notation.
+ * (JavaScript numbers: 21)
+ * 1000000 is the maximum recommended exponent value of a Big.
+ * (This limit is not enforced or checked.)
+ */
+ PE = 21, // 0 to 1000000
+
+
+/**************************************************************************************************/
+
+
+ // Error messages.
+ NAME = '[big.js] ',
+ INVALID = NAME + 'Invalid ',
+ INVALID_DP = INVALID + 'decimal places',
+ INVALID_RM = INVALID + 'rounding mode',
+ DIV_BY_ZERO = NAME + 'Division by zero',
+
+ // The shared prototype object.
+ P = {},
+ UNDEFINED = void 0,
+ NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
+
+
+/*
+ * Create and return a Big constructor.
+ *
+ */
+function _Big_() {
+
+ /*
+ * The Big constructor and exported function.
+ * Create and return a new instance of a Big number object.
+ *
+ * n {number|string|Big} A numeric value.
+ */
+ function Big(n) {
+ var x = this;
+
+ // Enable constructor usage without new.
+ if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);
+
+ // Duplicate.
+ if (n instanceof Big) {
+ x.s = n.s;
+ x.e = n.e;
+ x.c = n.c.slice();
+ } else {
+ parse(x, n);
+ }
+
+ /*
+ * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
+ * points to Object.
+ */
+ x.constructor = Big;
+ }
+
+ Big.prototype = P;
+ Big.DP = DP;
+ Big.RM = RM;
+ Big.NE = NE;
+ Big.PE = PE;
+ Big.version = '5.2.2';
+
+ return Big;
+}
+
+
+/*
+ * Parse the number or string value passed to a Big constructor.
+ *
+ * x {Big} A Big number instance.
+ * n {number|string} A numeric value.
+ */
+function parse(x, n) {
+ var e, i, nl;
+
+ // Minus zero?
+ if (n === 0 && 1 / n < 0) n = '-0';
+ else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');
+
+ // Determine sign.
+ x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;
+
+ // Decimal point?
+ if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');
+
+ // Exponential form?
+ if ((i = n.search(/e/i)) > 0) {
+
+ // Determine exponent.
+ if (e < 0) e = i;
+ e += +n.slice(i + 1);
+ n = n.substring(0, i);
+ } else if (e < 0) {
+
+ // Integer.
+ e = n.length;
+ }
+
+ nl = n.length;
+
+ // Determine leading zeros.
+ for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
+
+ if (i == nl) {
+
+ // Zero.
+ x.c = [x.e = 0];
+ } else {
+
+ // Determine trailing zeros.
+ for (; nl > 0 && n.charAt(--nl) == '0';);
+ x.e = e - i - 1;
+ x.c = [];
+
+ // Convert string to array of digits without leading/trailing zeros.
+ for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
+ }
+
+ return x;
+}
+
+
+/*
+ * Round Big x to a maximum of dp decimal places using rounding mode rm.
+ * Called by stringify, P.div, P.round and P.sqrt.
+ *
+ * x {Big} The Big to round.
+ * dp {number} Integer, 0 to MAX_DP inclusive.
+ * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
+ * [more] {boolean} Whether the result of division was truncated.
+ */
+function round(x, dp, rm, more) {
+ var xc = x.c,
+ i = x.e + dp + 1;
+
+ if (i < xc.length) {
+ if (rm === 1) {
+
+ // xc[i] is the digit after the digit that may be rounded up.
+ more = xc[i] >= 5;
+ } else if (rm === 2) {
+ more = xc[i] > 5 || xc[i] == 5 &&
+ (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
+ } else if (rm === 3) {
+ more = more || !!xc[0];
+ } else {
+ more = false;
+ if (rm !== 0) throw Error(INVALID_RM);
+ }
+
+ if (i < 1) {
+ xc.length = 1;
+
+ if (more) {
+
+ // 1, 0.1, 0.01, 0.001, 0.0001 etc.
+ x.e = -dp;
+ xc[0] = 1;
+ } else {
+
+ // Zero.
+ xc[0] = x.e = 0;
+ }
+ } else {
+
+ // Remove any digits after the required decimal places.
+ xc.length = i--;
+
+ // Round up?
+ if (more) {
+
+ // Rounding up may mean the previous digit has to be rounded up.
+ for (; ++xc[i] > 9;) {
+ xc[i] = 0;
+ if (!i--) {
+ ++x.e;
+ xc.unshift(1);
+ }
+ }
+ }
+
+ // Remove trailing zeros.
+ for (i = xc.length; !xc[--i];) xc.pop();
+ }
+ } else if (rm < 0 || rm > 3 || rm !== ~~rm) {
+ throw Error(INVALID_RM);
+ }
+
+ return x;
+}
+
+
+/*
+ * Return a string representing the value of Big x in normal or exponential notation.
+ * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
+ *
+ * x {Big}
+ * id? {number} Caller id.
+ * 1 toExponential
+ * 2 toFixed
+ * 3 toPrecision
+ * 4 valueOf
+ * n? {number|undefined} Caller's argument.
+ * k? {number|undefined}
+ */
+function stringify(x, id, n, k) {
+ var e, s,
+ Big = x.constructor,
+ z = !x.c[0];
+
+ if (n !== UNDEFINED) {
+ if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
+ throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
+ }
+
+ x = new Big(x);
+
+ // The index of the digit that may be rounded up.
+ n = k - x.e;
+
+ // Round?
+ if (x.c.length > ++k) round(x, n, Big.RM);
+
+ // toFixed: recalculate k as x.e may have changed if value rounded up.
+ if (id == 2) k = x.e + n + 1;
+
+ // Append zeros?
+ for (; x.c.length < k;) x.c.push(0);
+ }
+
+ e = x.e;
+ s = x.c.join('');
+ n = s.length;
+
+ // Exponential notation?
+ if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
+ s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;
+
+ // Normal notation.
+ } else if (e < 0) {
+ for (; ++e;) s = '0' + s;
+ s = '0.' + s;
+ } else if (e > 0) {
+ if (++e > n) for (e -= n; e--;) s += '0';
+ else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
+ } else if (n > 1) {
+ s = s.charAt(0) + '.' + s.slice(1);
+ }
+
+ return x.s < 0 && (!z || id == 4) ? '-' + s : s;
+}
+
+
+// Prototype/instance methods
+
+
+/*
+ * Return a new Big whose value is the absolute value of this Big.
+ */
+P.abs = function () {
+ var x = new this.constructor(this);
+ x.s = 1;
+ return x;
+};
+
+
+/*
+ * Return 1 if the value of this Big is greater than the value of Big y,
+ * -1 if the value of this Big is less than the value of Big y, or
+ * 0 if they have the same value.
+*/
+P.cmp = function (y) {
+ var isneg,
+ x = this,
+ xc = x.c,
+ yc = (y = new x.constructor(y)).c,
+ i = x.s,
+ j = y.s,
+ k = x.e,
+ l = y.e;
+
+ // Either zero?
+ if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;
+
+ // Signs differ?
+ if (i != j) return i;
+
+ isneg = i < 0;
+
+ // Compare exponents.
+ if (k != l) return k > l ^ isneg ? 1 : -1;
+
+ j = (k = xc.length) < (l = yc.length) ? k : l;
+
+ // Compare digit by digit.
+ for (i = -1; ++i < j;) {
+ if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
+ }
+
+ // Compare lengths.
+ return k == l ? 0 : k > l ^ isneg ? 1 : -1;
+};
+
+
+/*
+ * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
+ * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
+ */
+P.div = function (y) {
+ var x = this,
+ Big = x.constructor,
+ a = x.c, // dividend
+ b = (y = new Big(y)).c, // divisor
+ k = x.s == y.s ? 1 : -1,
+ dp = Big.DP;
+
+ if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);
+
+ // Divisor is zero?
+ if (!b[0]) throw Error(DIV_BY_ZERO);
+
+ // Dividend is 0? Return +-0.
+ if (!a[0]) return new Big(k * 0);
+
+ var bl, bt, n, cmp, ri,
+ bz = b.slice(),
+ ai = bl = b.length,
+ al = a.length,
+ r = a.slice(0, bl), // remainder
+ rl = r.length,
+ q = y, // quotient
+ qc = q.c = [],
+ qi = 0,
+ d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result
+
+ q.s = k;
+ k = d < 0 ? 0 : d;
+
+ // Create version of divisor with leading zero.
+ bz.unshift(0);
+
+ // Add zeros to make remainder as long as divisor.
+ for (; rl++ < bl;) r.push(0);
+
+ do {
+
+ // n is how many times the divisor goes into current remainder.
+ for (n = 0; n < 10; n++) {
+
+ // Compare divisor and remainder.
+ if (bl != (rl = r.length)) {
+ cmp = bl > rl ? 1 : -1;
+ } else {
+ for (ri = -1, cmp = 0; ++ri < bl;) {
+ if (b[ri] != r[ri]) {
+ cmp = b[ri] > r[ri] ? 1 : -1;
+ break;
+ }
+ }
+ }
+
+ // If divisor < remainder, subtract divisor from remainder.
+ if (cmp < 0) {
+
+ // Remainder can't be more than 1 digit longer than divisor.
+ // Equalise lengths using divisor with extra leading zero?
+ for (bt = rl == bl ? b : bz; rl;) {
+ if (r[--rl] < bt[rl]) {
+ ri = rl;
+ for (; ri && !r[--ri];) r[ri] = 9;
+ --r[ri];
+ r[rl] += 10;
+ }
+ r[rl] -= bt[rl];
+ }
+
+ for (; !r[0];) r.shift();
+ } else {
+ break;
+ }
+ }
+
+ // Add the digit n to the result array.
+ qc[qi++] = cmp ? n : ++n;
+
+ // Update the remainder.
+ if (r[0] && cmp) r[rl] = a[ai] || 0;
+ else r = [a[ai]];
+
+ } while ((ai++ < al || r[0] !== UNDEFINED) && k--);
+
+ // Leading zero? Do not remove if result is simply zero (qi == 1).
+ if (!qc[0] && qi != 1) {
+
+ // There can't be more than one zero.
+ qc.shift();
+ q.e--;
+ }
+
+ // Round?
+ if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
+
+ return q;
+};
+
+
+/*
+ * Return true if the value of this Big is equal to the value of Big y, otherwise return false.
+ */
+P.eq = function (y) {
+ return !this.cmp(y);
+};
+
+
+/*
+ * Return true if the value of this Big is greater than the value of Big y, otherwise return
+ * false.
+ */
+P.gt = function (y) {
+ return this.cmp(y) > 0;
+};
+
+
+/*
+ * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
+ * return false.
+ */
+P.gte = function (y) {
+ return this.cmp(y) > -1;
+};
+
+
+/*
+ * Return true if the value of this Big is less than the value of Big y, otherwise return false.
+ */
+P.lt = function (y) {
+ return this.cmp(y) < 0;
+};
+
+
+/*
+ * Return true if the value of this Big is less than or equal to the value of Big y, otherwise
+ * return false.
+ */
+P.lte = function (y) {
+ return this.cmp(y) < 1;
+};
+
+
+/*
+ * Return a new Big whose value is the value of this Big minus the value of Big y.
+ */
+P.minus = P.sub = function (y) {
+ var i, j, t, xlty,
+ x = this,
+ Big = x.constructor,
+ a = x.s,
+ b = (y = new Big(y)).s;
+
+ // Signs differ?
+ if (a != b) {
+ y.s = -b;
+ return x.plus(y);
+ }
+
+ var xc = x.c.slice(),
+ xe = x.e,
+ yc = y.c,
+ ye = y.e;
+
+ // Either zero?
+ if (!xc[0] || !yc[0]) {
+
+ // y is non-zero? x is non-zero? Or both are zero.
+ return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
+ }
+
+ // Determine which is the bigger number. Prepend zeros to equalise exponents.
+ if (a = xe - ye) {
+
+ if (xlty = a < 0) {
+ a = -a;
+ t = xc;
+ } else {
+ ye = xe;
+ t = yc;
+ }
+
+ t.reverse();
+ for (b = a; b--;) t.push(0);
+ t.reverse();
+ } else {
+
+ // Exponents equal. Check digit by digit.
+ j = ((xlty = xc.length < yc.length) ? xc : yc).length;
+
+ for (a = b = 0; b < j; b++) {
+ if (xc[b] != yc[b]) {
+ xlty = xc[b] < yc[b];
+ break;
+ }
+ }
+ }
+
+ // x < y? Point xc to the array of the bigger number.
+ if (xlty) {
+ t = xc;
+ xc = yc;
+ yc = t;
+ y.s = -y.s;
+ }
+
+ /*
+ * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
+ * needs to start at yc.length.
+ */
+ if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;
+
+ // Subtract yc from xc.
+ for (b = i; j > a;) {
+ if (xc[--j] < yc[j]) {
+ for (i = j; i && !xc[--i];) xc[i] = 9;
+ --xc[i];
+ xc[j] += 10;
+ }
+
+ xc[j] -= yc[j];
+ }
+
+ // Remove trailing zeros.
+ for (; xc[--b] === 0;) xc.pop();
+
+ // Remove leading zeros and adjust exponent accordingly.
+ for (; xc[0] === 0;) {
+ xc.shift();
+ --ye;
+ }
+
+ if (!xc[0]) {
+
+ // n - n = +0
+ y.s = 1;
+
+ // Result must be zero.
+ xc = [ye = 0];
+ }
+
+ y.c = xc;
+ y.e = ye;
+
+ return y;
+};
+
+
+/*
+ * Return a new Big whose value is the value of this Big modulo the value of Big y.
+ */
+P.mod = function (y) {
+ var ygtx,
+ x = this,
+ Big = x.constructor,
+ a = x.s,
+ b = (y = new Big(y)).s;
+
+ if (!y.c[0]) throw Error(DIV_BY_ZERO);
+
+ x.s = y.s = 1;
+ ygtx = y.cmp(x) == 1;
+ x.s = a;
+ y.s = b;
+
+ if (ygtx) return new Big(x);
+
+ a = Big.DP;
+ b = Big.RM;
+ Big.DP = Big.RM = 0;
+ x = x.div(y);
+ Big.DP = a;
+ Big.RM = b;
+
+ return this.minus(x.times(y));
+};
+
+
+/*
+ * Return a new Big whose value is the value of this Big plus the value of Big y.
+ */
+P.plus = P.add = function (y) {
+ var t,
+ x = this,
+ Big = x.constructor,
+ a = x.s,
+ b = (y = new Big(y)).s;
+
+ // Signs differ?
+ if (a != b) {
+ y.s = -b;
+ return x.minus(y);
+ }
+
+ var xe = x.e,
+ xc = x.c,
+ ye = y.e,
+ yc = y.c;
+
+ // Either zero? y is non-zero? x is non-zero? Or both are zero.
+ if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
+
+ xc = xc.slice();
+
+ // Prepend zeros to equalise exponents.
+ // Note: reverse faster than unshifts.
+ if (a = xe - ye) {
+ if (a > 0) {
+ ye = xe;
+ t = yc;
+ } else {
+ a = -a;
+ t = xc;
+ }
+
+ t.reverse();
+ for (; a--;) t.push(0);
+ t.reverse();
+ }
+
+ // Point xc to the longer array.
+ if (xc.length - yc.length < 0) {
+ t = yc;
+ yc = xc;
+ xc = t;
+ }
+
+ a = yc.length;
+
+ // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
+ for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;
+
+ // No need to check for zero, as +x + +y != 0 && -x + -y != 0
+
+ if (b) {
+ xc.unshift(b);
+ ++ye;
+ }
+
+ // Remove trailing zeros.
+ for (a = xc.length; xc[--a] === 0;) xc.pop();
+
+ y.c = xc;
+ y.e = ye;
+
+ return y;
+};
+
+
+/*
+ * Return a Big whose value is the value of this Big raised to the power n.
+ * If n is negative, round to a maximum of Big.DP decimal places using rounding
+ * mode Big.RM.
+ *
+ * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
+ */
+P.pow = function (n) {
+ var x = this,
+ one = new x.constructor(1),
+ y = one,
+ isneg = n < 0;
+
+ if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
+ if (isneg) n = -n;
+
+ for (;;) {
+ if (n & 1) y = y.times(x);
+ n >>= 1;
+ if (!n) break;
+ x = x.times(x);
+ }
+
+ return isneg ? one.div(y) : y;
+};
+
+
+/*
+ * Return a new Big whose value is the value of this Big rounded using rounding mode rm
+ * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
+ * multiple of 10**-dp.
+ * If dp is not specified, round to 0 decimal places.
+ * If rm is not specified, use Big.RM.
+ *
+ * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
+ * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
+ */
+P.round = function (dp, rm) {
+ var Big = this.constructor;
+ if (dp === UNDEFINED) dp = 0;
+ else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
+ return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
+};
+
+
+/*
+ * Return a new Big whose value is the square root of the value of this Big, rounded, if
+ * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
+ */
+P.sqrt = function () {
+ var r, c, t,
+ x = this,
+ Big = x.constructor,
+ s = x.s,
+ e = x.e,
+ half = new Big(0.5);
+
+ // Zero?
+ if (!x.c[0]) return new Big(x);
+
+ // Negative?
+ if (s < 0) throw Error(NAME + 'No square root');
+
+ // Estimate.
+ s = Math.sqrt(x + '');
+
+ // Math.sqrt underflow/overflow?
+ // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
+ if (s === 0 || s === 1 / 0) {
+ c = x.c.join('');
+ if (!(c.length + e & 1)) c += '0';
+ s = Math.sqrt(c);
+ e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
+ r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
+ } else {
+ r = new Big(s);
+ }
+
+ e = r.e + (Big.DP += 4);
+
+ // Newton-Raphson iteration.
+ do {
+ t = r;
+ r = half.times(t.plus(x.div(t)));
+ } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));
+
+ return round(r, Big.DP -= 4, Big.RM);
+};
+
+
+/*
+ * Return a new Big whose value is the value of this Big times the value of Big y.
+ */
+P.times = P.mul = function (y) {
+ var c,
+ x = this,
+ Big = x.constructor,
+ xc = x.c,
+ yc = (y = new Big(y)).c,
+ a = xc.length,
+ b = yc.length,
+ i = x.e,
+ j = y.e;
+
+ // Determine sign of result.
+ y.s = x.s == y.s ? 1 : -1;
+
+ // Return signed 0 if either 0.
+ if (!xc[0] || !yc[0]) return new Big(y.s * 0);
+
+ // Initialise exponent of result as x.e + y.e.
+ y.e = i + j;
+
+ // If array xc has fewer digits than yc, swap xc and yc, and lengths.
+ if (a < b) {
+ c = xc;
+ xc = yc;
+ yc = c;
+ j = a;
+ a = b;
+ b = j;
+ }
+
+ // Initialise coefficient array of result with zeros.
+ for (c = new Array(j = a + b); j--;) c[j] = 0;
+
+ // Multiply.
+
+ // i is initially xc.length.
+ for (i = b; i--;) {
+ b = 0;
+
+ // a is yc.length.
+ for (j = a + i; j > i;) {
+
+ // Current sum of products at this digit position, plus carry.
+ b = c[j] + yc[i] * xc[j - i - 1] + b;
+ c[j--] = b % 10;
+
+ // carry
+ b = b / 10 | 0;
+ }
+
+ c[j] = (c[j] + b) % 10;
+ }
+
+ // Increment result exponent if there is a final carry, otherwise remove leading zero.
+ if (b) ++y.e;
+ else c.shift();
+
+ // Remove trailing zeros.
+ for (i = c.length; !c[--i];) c.pop();
+ y.c = c;
+
+ return y;
+};
+
+
+/*
+ * Return a string representing the value of this Big in exponential notation to dp fixed decimal
+ * places and rounded using Big.RM.
+ *
+ * dp? {number} Integer, 0 to MAX_DP inclusive.
+ */
+P.toExponential = function (dp) {
+ return stringify(this, 1, dp, dp);
+};
+
+
+/*
+ * Return a string representing the value of this Big in normal notation to dp fixed decimal
+ * places and rounded using Big.RM.
+ *
+ * dp? {number} Integer, 0 to MAX_DP inclusive.
+ *
+ * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
+ * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
+ */
+P.toFixed = function (dp) {
+ return stringify(this, 2, dp, this.e + dp);
+};
+
+
+/*
+ * Return a string representing the value of this Big rounded to sd significant digits using
+ * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
+ * the integer part of the value in normal notation.
+ *
+ * sd {number} Integer, 1 to MAX_DP inclusive.
+ */
+P.toPrecision = function (sd) {
+ return stringify(this, 3, sd, sd - 1);
+};
+
+
+/*
+ * Return a string representing the value of this Big.
+ * Return exponential notation if this Big has a positive exponent equal to or greater than
+ * Big.PE, or a negative exponent equal to or less than Big.NE.
+ * Omit the sign for negative zero.
+ */
+P.toString = function () {
+ return stringify(this);
+};
+
+
+/*
+ * Return a string representing the value of this Big.
+ * Return exponential notation if this Big has a positive exponent equal to or greater than
+ * Big.PE, or a negative exponent equal to or less than Big.NE.
+ * Include the sign for negative zero.
+ */
+P.valueOf = P.toJSON = function () {
+ return stringify(this, 4);
+};
+
+
+// Export
+
+
+export var Big = _Big_();
+
+export default Big;