diff options
Diffstat (limited to 'node_modules/bson/lib/bson/long.js')
-rw-r--r-- | node_modules/bson/lib/bson/long.js | 851 |
1 files changed, 0 insertions, 851 deletions
diff --git a/node_modules/bson/lib/bson/long.js b/node_modules/bson/lib/bson/long.js deleted file mode 100644 index 78215aa..0000000 --- a/node_modules/bson/lib/bson/long.js +++ /dev/null @@ -1,851 +0,0 @@ -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// -// Copyright 2009 Google Inc. All Rights Reserved - -/** - * Defines a Long class for representing a 64-bit two's-complement - * integer value, which faithfully simulates the behavior of a Java "Long". This - * implementation is derived from LongLib in GWT. - * - * Constructs a 64-bit two's-complement integer, given its low and high 32-bit - * values as *signed* integers. See the from* functions below for more - * convenient ways of constructing Longs. - * - * The internal representation of a Long is the two given signed, 32-bit values. - * We use 32-bit pieces because these are the size of integers on which - * Javascript performs bit-operations. For operations like addition and - * multiplication, we split each number into 16-bit pieces, which can easily be - * multiplied within Javascript's floating-point representation without overflow - * or change in sign. - * - * In the algorithms below, we frequently reduce the negative case to the - * positive case by negating the input(s) and then post-processing the result. - * Note that we must ALWAYS check specially whether those values are MIN_VALUE - * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as - * a positive number, it overflows back into a negative). Not handling this - * case would often result in infinite recursion. - * - * @class - * @param {number} low the low (signed) 32 bits of the Long. - * @param {number} high the high (signed) 32 bits of the Long. - * @return {Long} - */ -function Long(low, high) { - if (!(this instanceof Long)) return new Long(low, high); - - this._bsontype = 'Long'; - /** - * @type {number} - * @ignore - */ - this.low_ = low | 0; // force into 32 signed bits. - - /** - * @type {number} - * @ignore - */ - this.high_ = high | 0; // force into 32 signed bits. -} - -/** - * Return the int value. - * - * @method - * @return {number} the value, assuming it is a 32-bit integer. - */ -Long.prototype.toInt = function() { - return this.low_; -}; - -/** - * Return the Number value. - * - * @method - * @return {number} the closest floating-point representation to this value. - */ -Long.prototype.toNumber = function() { - return this.high_ * Long.TWO_PWR_32_DBL_ + this.getLowBitsUnsigned(); -}; - -/** - * Return the JSON value. - * - * @method - * @return {string} the JSON representation. - */ -Long.prototype.toJSON = function() { - return this.toString(); -}; - -/** - * Return the String value. - * - * @method - * @param {number} [opt_radix] the radix in which the text should be written. - * @return {string} the textual representation of this value. - */ -Long.prototype.toString = function(opt_radix) { - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (this.isZero()) { - return '0'; - } - - if (this.isNegative()) { - if (this.equals(Long.MIN_VALUE)) { - // We need to change the Long value before it can be negated, so we remove - // the bottom-most digit in this base and then recurse to do the rest. - var radixLong = Long.fromNumber(radix); - var div = this.div(radixLong); - var rem = div.multiply(radixLong).subtract(this); - return div.toString(radix) + rem.toInt().toString(radix); - } else { - return '-' + this.negate().toString(radix); - } - } - - // Do several (6) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = Long.fromNumber(Math.pow(radix, 6)); - - rem = this; - var result = ''; - - while (!rem.isZero()) { - var remDiv = rem.div(radixToPower); - var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt(); - var digits = intval.toString(radix); - - rem = remDiv; - if (rem.isZero()) { - return digits + result; - } else { - while (digits.length < 6) { - digits = '0' + digits; - } - result = '' + digits + result; - } - } -}; - -/** - * Return the high 32-bits value. - * - * @method - * @return {number} the high 32-bits as a signed value. - */ -Long.prototype.getHighBits = function() { - return this.high_; -}; - -/** - * Return the low 32-bits value. - * - * @method - * @return {number} the low 32-bits as a signed value. - */ -Long.prototype.getLowBits = function() { - return this.low_; -}; - -/** - * Return the low unsigned 32-bits value. - * - * @method - * @return {number} the low 32-bits as an unsigned value. - */ -Long.prototype.getLowBitsUnsigned = function() { - return this.low_ >= 0 ? this.low_ : Long.TWO_PWR_32_DBL_ + this.low_; -}; - -/** - * Returns the number of bits needed to represent the absolute value of this Long. - * - * @method - * @return {number} Returns the number of bits needed to represent the absolute value of this Long. - */ -Long.prototype.getNumBitsAbs = function() { - if (this.isNegative()) { - if (this.equals(Long.MIN_VALUE)) { - return 64; - } else { - return this.negate().getNumBitsAbs(); - } - } else { - var val = this.high_ !== 0 ? this.high_ : this.low_; - for (var bit = 31; bit > 0; bit--) { - if ((val & (1 << bit)) !== 0) { - break; - } - } - return this.high_ !== 0 ? bit + 33 : bit + 1; - } -}; - -/** - * Return whether this value is zero. - * - * @method - * @return {boolean} whether this value is zero. - */ -Long.prototype.isZero = function() { - return this.high_ === 0 && this.low_ === 0; -}; - -/** - * Return whether this value is negative. - * - * @method - * @return {boolean} whether this value is negative. - */ -Long.prototype.isNegative = function() { - return this.high_ < 0; -}; - -/** - * Return whether this value is odd. - * - * @method - * @return {boolean} whether this value is odd. - */ -Long.prototype.isOdd = function() { - return (this.low_ & 1) === 1; -}; - -/** - * Return whether this Long equals the other - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} whether this Long equals the other - */ -Long.prototype.equals = function(other) { - return this.high_ === other.high_ && this.low_ === other.low_; -}; - -/** - * Return whether this Long does not equal the other. - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} whether this Long does not equal the other. - */ -Long.prototype.notEquals = function(other) { - return this.high_ !== other.high_ || this.low_ !== other.low_; -}; - -/** - * Return whether this Long is less than the other. - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} whether this Long is less than the other. - */ -Long.prototype.lessThan = function(other) { - return this.compare(other) < 0; -}; - -/** - * Return whether this Long is less than or equal to the other. - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} whether this Long is less than or equal to the other. - */ -Long.prototype.lessThanOrEqual = function(other) { - return this.compare(other) <= 0; -}; - -/** - * Return whether this Long is greater than the other. - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} whether this Long is greater than the other. - */ -Long.prototype.greaterThan = function(other) { - return this.compare(other) > 0; -}; - -/** - * Return whether this Long is greater than or equal to the other. - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} whether this Long is greater than or equal to the other. - */ -Long.prototype.greaterThanOrEqual = function(other) { - return this.compare(other) >= 0; -}; - -/** - * Compares this Long with the given one. - * - * @method - * @param {Long} other Long to compare against. - * @return {boolean} 0 if they are the same, 1 if the this is greater, and -1 if the given one is greater. - */ -Long.prototype.compare = function(other) { - if (this.equals(other)) { - return 0; - } - - var thisNeg = this.isNegative(); - var otherNeg = other.isNegative(); - if (thisNeg && !otherNeg) { - return -1; - } - if (!thisNeg && otherNeg) { - return 1; - } - - // at this point, the signs are the same, so subtraction will not overflow - if (this.subtract(other).isNegative()) { - return -1; - } else { - return 1; - } -}; - -/** - * The negation of this value. - * - * @method - * @return {Long} the negation of this value. - */ -Long.prototype.negate = function() { - if (this.equals(Long.MIN_VALUE)) { - return Long.MIN_VALUE; - } else { - return this.not().add(Long.ONE); - } -}; - -/** - * Returns the sum of this and the given Long. - * - * @method - * @param {Long} other Long to add to this one. - * @return {Long} the sum of this and the given Long. - */ -Long.prototype.add = function(other) { - // Divide each number into 4 chunks of 16 bits, and then sum the chunks. - - var a48 = this.high_ >>> 16; - var a32 = this.high_ & 0xffff; - var a16 = this.low_ >>> 16; - var a00 = this.low_ & 0xffff; - - var b48 = other.high_ >>> 16; - var b32 = other.high_ & 0xffff; - var b16 = other.low_ >>> 16; - var b00 = other.low_ & 0xffff; - - var c48 = 0, - c32 = 0, - c16 = 0, - c00 = 0; - c00 += a00 + b00; - c16 += c00 >>> 16; - c00 &= 0xffff; - c16 += a16 + b16; - c32 += c16 >>> 16; - c16 &= 0xffff; - c32 += a32 + b32; - c48 += c32 >>> 16; - c32 &= 0xffff; - c48 += a48 + b48; - c48 &= 0xffff; - return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); -}; - -/** - * Returns the difference of this and the given Long. - * - * @method - * @param {Long} other Long to subtract from this. - * @return {Long} the difference of this and the given Long. - */ -Long.prototype.subtract = function(other) { - return this.add(other.negate()); -}; - -/** - * Returns the product of this and the given Long. - * - * @method - * @param {Long} other Long to multiply with this. - * @return {Long} the product of this and the other. - */ -Long.prototype.multiply = function(other) { - if (this.isZero()) { - return Long.ZERO; - } else if (other.isZero()) { - return Long.ZERO; - } - - if (this.equals(Long.MIN_VALUE)) { - return other.isOdd() ? Long.MIN_VALUE : Long.ZERO; - } else if (other.equals(Long.MIN_VALUE)) { - return this.isOdd() ? Long.MIN_VALUE : Long.ZERO; - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().multiply(other.negate()); - } else { - return this.negate() - .multiply(other) - .negate(); - } - } else if (other.isNegative()) { - return this.multiply(other.negate()).negate(); - } - - // If both Longs are small, use float multiplication - if (this.lessThan(Long.TWO_PWR_24_) && other.lessThan(Long.TWO_PWR_24_)) { - return Long.fromNumber(this.toNumber() * other.toNumber()); - } - - // Divide each Long into 4 chunks of 16 bits, and then add up 4x4 products. - // We can skip products that would overflow. - - var a48 = this.high_ >>> 16; - var a32 = this.high_ & 0xffff; - var a16 = this.low_ >>> 16; - var a00 = this.low_ & 0xffff; - - var b48 = other.high_ >>> 16; - var b32 = other.high_ & 0xffff; - var b16 = other.low_ >>> 16; - var b00 = other.low_ & 0xffff; - - var c48 = 0, - c32 = 0, - c16 = 0, - c00 = 0; - c00 += a00 * b00; - c16 += c00 >>> 16; - c00 &= 0xffff; - c16 += a16 * b00; - c32 += c16 >>> 16; - c16 &= 0xffff; - c16 += a00 * b16; - c32 += c16 >>> 16; - c16 &= 0xffff; - c32 += a32 * b00; - c48 += c32 >>> 16; - c32 &= 0xffff; - c32 += a16 * b16; - c48 += c32 >>> 16; - c32 &= 0xffff; - c32 += a00 * b32; - c48 += c32 >>> 16; - c32 &= 0xffff; - c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; - c48 &= 0xffff; - return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); -}; - -/** - * Returns this Long divided by the given one. - * - * @method - * @param {Long} other Long by which to divide. - * @return {Long} this Long divided by the given one. - */ -Long.prototype.div = function(other) { - if (other.isZero()) { - throw Error('division by zero'); - } else if (this.isZero()) { - return Long.ZERO; - } - - if (this.equals(Long.MIN_VALUE)) { - if (other.equals(Long.ONE) || other.equals(Long.NEG_ONE)) { - return Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE - } else if (other.equals(Long.MIN_VALUE)) { - return Long.ONE; - } else { - // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. - var halfThis = this.shiftRight(1); - var approx = halfThis.div(other).shiftLeft(1); - if (approx.equals(Long.ZERO)) { - return other.isNegative() ? Long.ONE : Long.NEG_ONE; - } else { - var rem = this.subtract(other.multiply(approx)); - var result = approx.add(rem.div(other)); - return result; - } - } - } else if (other.equals(Long.MIN_VALUE)) { - return Long.ZERO; - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().div(other.negate()); - } else { - return this.negate() - .div(other) - .negate(); - } - } else if (other.isNegative()) { - return this.div(other.negate()).negate(); - } - - // Repeat the following until the remainder is less than other: find a - // floating-point that approximates remainder / other *from below*, add this - // into the result, and subtract it from the remainder. It is critical that - // the approximate value is less than or equal to the real value so that the - // remainder never becomes negative. - var res = Long.ZERO; - rem = this; - while (rem.greaterThanOrEqual(other)) { - // Approximate the result of division. This may be a little greater or - // smaller than the actual value. - approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); - - // We will tweak the approximate result by changing it in the 48-th digit or - // the smallest non-fractional digit, whichever is larger. - var log2 = Math.ceil(Math.log(approx) / Math.LN2); - var delta = log2 <= 48 ? 1 : Math.pow(2, log2 - 48); - - // Decrease the approximation until it is smaller than the remainder. Note - // that if it is too large, the product overflows and is negative. - var approxRes = Long.fromNumber(approx); - var approxRem = approxRes.multiply(other); - while (approxRem.isNegative() || approxRem.greaterThan(rem)) { - approx -= delta; - approxRes = Long.fromNumber(approx); - approxRem = approxRes.multiply(other); - } - - // We know the answer can't be zero... and actually, zero would cause - // infinite recursion since we would make no progress. - if (approxRes.isZero()) { - approxRes = Long.ONE; - } - - res = res.add(approxRes); - rem = rem.subtract(approxRem); - } - return res; -}; - -/** - * Returns this Long modulo the given one. - * - * @method - * @param {Long} other Long by which to mod. - * @return {Long} this Long modulo the given one. - */ -Long.prototype.modulo = function(other) { - return this.subtract(this.div(other).multiply(other)); -}; - -/** - * The bitwise-NOT of this value. - * - * @method - * @return {Long} the bitwise-NOT of this value. - */ -Long.prototype.not = function() { - return Long.fromBits(~this.low_, ~this.high_); -}; - -/** - * Returns the bitwise-AND of this Long and the given one. - * - * @method - * @param {Long} other the Long with which to AND. - * @return {Long} the bitwise-AND of this and the other. - */ -Long.prototype.and = function(other) { - return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_); -}; - -/** - * Returns the bitwise-OR of this Long and the given one. - * - * @method - * @param {Long} other the Long with which to OR. - * @return {Long} the bitwise-OR of this and the other. - */ -Long.prototype.or = function(other) { - return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_); -}; - -/** - * Returns the bitwise-XOR of this Long and the given one. - * - * @method - * @param {Long} other the Long with which to XOR. - * @return {Long} the bitwise-XOR of this and the other. - */ -Long.prototype.xor = function(other) { - return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_); -}; - -/** - * Returns this Long with bits shifted to the left by the given amount. - * - * @method - * @param {number} numBits the number of bits by which to shift. - * @return {Long} this shifted to the left by the given amount. - */ -Long.prototype.shiftLeft = function(numBits) { - numBits &= 63; - if (numBits === 0) { - return this; - } else { - var low = this.low_; - if (numBits < 32) { - var high = this.high_; - return Long.fromBits(low << numBits, (high << numBits) | (low >>> (32 - numBits))); - } else { - return Long.fromBits(0, low << (numBits - 32)); - } - } -}; - -/** - * Returns this Long with bits shifted to the right by the given amount. - * - * @method - * @param {number} numBits the number of bits by which to shift. - * @return {Long} this shifted to the right by the given amount. - */ -Long.prototype.shiftRight = function(numBits) { - numBits &= 63; - if (numBits === 0) { - return this; - } else { - var high = this.high_; - if (numBits < 32) { - var low = this.low_; - return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >> numBits); - } else { - return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1); - } - } -}; - -/** - * Returns this Long with bits shifted to the right by the given amount, with the new top bits matching the current sign bit. - * - * @method - * @param {number} numBits the number of bits by which to shift. - * @return {Long} this shifted to the right by the given amount, with zeros placed into the new leading bits. - */ -Long.prototype.shiftRightUnsigned = function(numBits) { - numBits &= 63; - if (numBits === 0) { - return this; - } else { - var high = this.high_; - if (numBits < 32) { - var low = this.low_; - return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits); - } else if (numBits === 32) { - return Long.fromBits(high, 0); - } else { - return Long.fromBits(high >>> (numBits - 32), 0); - } - } -}; - -/** - * Returns a Long representing the given (32-bit) integer value. - * - * @method - * @param {number} value the 32-bit integer in question. - * @return {Long} the corresponding Long value. - */ -Long.fromInt = function(value) { - if (-128 <= value && value < 128) { - var cachedObj = Long.INT_CACHE_[value]; - if (cachedObj) { - return cachedObj; - } - } - - var obj = new Long(value | 0, value < 0 ? -1 : 0); - if (-128 <= value && value < 128) { - Long.INT_CACHE_[value] = obj; - } - return obj; -}; - -/** - * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned. - * - * @method - * @param {number} value the number in question. - * @return {Long} the corresponding Long value. - */ -Long.fromNumber = function(value) { - if (isNaN(value) || !isFinite(value)) { - return Long.ZERO; - } else if (value <= -Long.TWO_PWR_63_DBL_) { - return Long.MIN_VALUE; - } else if (value + 1 >= Long.TWO_PWR_63_DBL_) { - return Long.MAX_VALUE; - } else if (value < 0) { - return Long.fromNumber(-value).negate(); - } else { - return new Long((value % Long.TWO_PWR_32_DBL_) | 0, (value / Long.TWO_PWR_32_DBL_) | 0); - } -}; - -/** - * Returns a Long representing the 64-bit integer that comes by concatenating the given high and low bits. Each is assumed to use 32 bits. - * - * @method - * @param {number} lowBits the low 32-bits. - * @param {number} highBits the high 32-bits. - * @return {Long} the corresponding Long value. - */ -Long.fromBits = function(lowBits, highBits) { - return new Long(lowBits, highBits); -}; - -/** - * Returns a Long representation of the given string, written using the given radix. - * - * @method - * @param {string} str the textual representation of the Long. - * @param {number} opt_radix the radix in which the text is written. - * @return {Long} the corresponding Long value. - */ -Long.fromString = function(str, opt_radix) { - if (str.length === 0) { - throw Error('number format error: empty string'); - } - - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (str.charAt(0) === '-') { - return Long.fromString(str.substring(1), radix).negate(); - } else if (str.indexOf('-') >= 0) { - throw Error('number format error: interior "-" character: ' + str); - } - - // Do several (8) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = Long.fromNumber(Math.pow(radix, 8)); - - var result = Long.ZERO; - for (var i = 0; i < str.length; i += 8) { - var size = Math.min(8, str.length - i); - var value = parseInt(str.substring(i, i + size), radix); - if (size < 8) { - var power = Long.fromNumber(Math.pow(radix, size)); - result = result.multiply(power).add(Long.fromNumber(value)); - } else { - result = result.multiply(radixToPower); - result = result.add(Long.fromNumber(value)); - } - } - return result; -}; - -// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the -// from* methods on which they depend. - -/** - * A cache of the Long representations of small integer values. - * @type {Object} - * @ignore - */ -Long.INT_CACHE_ = {}; - -// NOTE: the compiler should inline these constant values below and then remove -// these variables, so there should be no runtime penalty for these. - -/** - * Number used repeated below in calculations. This must appear before the - * first call to any from* function below. - * @type {number} - * @ignore - */ -Long.TWO_PWR_16_DBL_ = 1 << 16; - -/** - * @type {number} - * @ignore - */ -Long.TWO_PWR_24_DBL_ = 1 << 24; - -/** - * @type {number} - * @ignore - */ -Long.TWO_PWR_32_DBL_ = Long.TWO_PWR_16_DBL_ * Long.TWO_PWR_16_DBL_; - -/** - * @type {number} - * @ignore - */ -Long.TWO_PWR_31_DBL_ = Long.TWO_PWR_32_DBL_ / 2; - -/** - * @type {number} - * @ignore - */ -Long.TWO_PWR_48_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_16_DBL_; - -/** - * @type {number} - * @ignore - */ -Long.TWO_PWR_64_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_32_DBL_; - -/** - * @type {number} - * @ignore - */ -Long.TWO_PWR_63_DBL_ = Long.TWO_PWR_64_DBL_ / 2; - -/** @type {Long} */ -Long.ZERO = Long.fromInt(0); - -/** @type {Long} */ -Long.ONE = Long.fromInt(1); - -/** @type {Long} */ -Long.NEG_ONE = Long.fromInt(-1); - -/** @type {Long} */ -Long.MAX_VALUE = Long.fromBits(0xffffffff | 0, 0x7fffffff | 0); - -/** @type {Long} */ -Long.MIN_VALUE = Long.fromBits(0, 0x80000000 | 0); - -/** - * @type {Long} - * @ignore - */ -Long.TWO_PWR_24_ = Long.fromInt(1 << 24); - -/** - * Expose. - */ -module.exports = Long; -module.exports.Long = Long; |