diff options
Diffstat (limited to 'node_modules/bson/lib/bson/long.js')
-rw-r--r-- | node_modules/bson/lib/bson/long.js | 851 |
1 files changed, 851 insertions, 0 deletions
diff --git a/node_modules/bson/lib/bson/long.js b/node_modules/bson/lib/bson/long.js new file mode 100644 index 0000000..78215aa --- /dev/null +++ b/node_modules/bson/lib/bson/long.js @@ -0,0 +1,851 @@ +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Copyright 2009 Google Inc. All Rights Reserved + +/** + * Defines a Long class for representing a 64-bit two's-complement + * integer value, which faithfully simulates the behavior of a Java "Long". This + * implementation is derived from LongLib in GWT. + * + * Constructs a 64-bit two's-complement integer, given its low and high 32-bit + * values as *signed* integers. See the from* functions below for more + * convenient ways of constructing Longs. + * + * The internal representation of a Long is the two given signed, 32-bit values. + * We use 32-bit pieces because these are the size of integers on which + * Javascript performs bit-operations. For operations like addition and + * multiplication, we split each number into 16-bit pieces, which can easily be + * multiplied within Javascript's floating-point representation without overflow + * or change in sign. + * + * In the algorithms below, we frequently reduce the negative case to the + * positive case by negating the input(s) and then post-processing the result. + * Note that we must ALWAYS check specially whether those values are MIN_VALUE + * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as + * a positive number, it overflows back into a negative). Not handling this + * case would often result in infinite recursion. + * + * @class + * @param {number} low the low (signed) 32 bits of the Long. + * @param {number} high the high (signed) 32 bits of the Long. + * @return {Long} + */ +function Long(low, high) { + if (!(this instanceof Long)) return new Long(low, high); + + this._bsontype = 'Long'; + /** + * @type {number} + * @ignore + */ + this.low_ = low | 0; // force into 32 signed bits. + + /** + * @type {number} + * @ignore + */ + this.high_ = high | 0; // force into 32 signed bits. +} + +/** + * Return the int value. + * + * @method + * @return {number} the value, assuming it is a 32-bit integer. + */ +Long.prototype.toInt = function() { + return this.low_; +}; + +/** + * Return the Number value. + * + * @method + * @return {number} the closest floating-point representation to this value. + */ +Long.prototype.toNumber = function() { + return this.high_ * Long.TWO_PWR_32_DBL_ + this.getLowBitsUnsigned(); +}; + +/** + * Return the JSON value. + * + * @method + * @return {string} the JSON representation. + */ +Long.prototype.toJSON = function() { + return this.toString(); +}; + +/** + * Return the String value. + * + * @method + * @param {number} [opt_radix] the radix in which the text should be written. + * @return {string} the textual representation of this value. + */ +Long.prototype.toString = function(opt_radix) { + var radix = opt_radix || 10; + if (radix < 2 || 36 < radix) { + throw Error('radix out of range: ' + radix); + } + + if (this.isZero()) { + return '0'; + } + + if (this.isNegative()) { + if (this.equals(Long.MIN_VALUE)) { + // We need to change the Long value before it can be negated, so we remove + // the bottom-most digit in this base and then recurse to do the rest. + var radixLong = Long.fromNumber(radix); + var div = this.div(radixLong); + var rem = div.multiply(radixLong).subtract(this); + return div.toString(radix) + rem.toInt().toString(radix); + } else { + return '-' + this.negate().toString(radix); + } + } + + // Do several (6) digits each time through the loop, so as to + // minimize the calls to the very expensive emulated div. + var radixToPower = Long.fromNumber(Math.pow(radix, 6)); + + rem = this; + var result = ''; + + while (!rem.isZero()) { + var remDiv = rem.div(radixToPower); + var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt(); + var digits = intval.toString(radix); + + rem = remDiv; + if (rem.isZero()) { + return digits + result; + } else { + while (digits.length < 6) { + digits = '0' + digits; + } + result = '' + digits + result; + } + } +}; + +/** + * Return the high 32-bits value. + * + * @method + * @return {number} the high 32-bits as a signed value. + */ +Long.prototype.getHighBits = function() { + return this.high_; +}; + +/** + * Return the low 32-bits value. + * + * @method + * @return {number} the low 32-bits as a signed value. + */ +Long.prototype.getLowBits = function() { + return this.low_; +}; + +/** + * Return the low unsigned 32-bits value. + * + * @method + * @return {number} the low 32-bits as an unsigned value. + */ +Long.prototype.getLowBitsUnsigned = function() { + return this.low_ >= 0 ? this.low_ : Long.TWO_PWR_32_DBL_ + this.low_; +}; + +/** + * Returns the number of bits needed to represent the absolute value of this Long. + * + * @method + * @return {number} Returns the number of bits needed to represent the absolute value of this Long. + */ +Long.prototype.getNumBitsAbs = function() { + if (this.isNegative()) { + if (this.equals(Long.MIN_VALUE)) { + return 64; + } else { + return this.negate().getNumBitsAbs(); + } + } else { + var val = this.high_ !== 0 ? this.high_ : this.low_; + for (var bit = 31; bit > 0; bit--) { + if ((val & (1 << bit)) !== 0) { + break; + } + } + return this.high_ !== 0 ? bit + 33 : bit + 1; + } +}; + +/** + * Return whether this value is zero. + * + * @method + * @return {boolean} whether this value is zero. + */ +Long.prototype.isZero = function() { + return this.high_ === 0 && this.low_ === 0; +}; + +/** + * Return whether this value is negative. + * + * @method + * @return {boolean} whether this value is negative. + */ +Long.prototype.isNegative = function() { + return this.high_ < 0; +}; + +/** + * Return whether this value is odd. + * + * @method + * @return {boolean} whether this value is odd. + */ +Long.prototype.isOdd = function() { + return (this.low_ & 1) === 1; +}; + +/** + * Return whether this Long equals the other + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} whether this Long equals the other + */ +Long.prototype.equals = function(other) { + return this.high_ === other.high_ && this.low_ === other.low_; +}; + +/** + * Return whether this Long does not equal the other. + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} whether this Long does not equal the other. + */ +Long.prototype.notEquals = function(other) { + return this.high_ !== other.high_ || this.low_ !== other.low_; +}; + +/** + * Return whether this Long is less than the other. + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} whether this Long is less than the other. + */ +Long.prototype.lessThan = function(other) { + return this.compare(other) < 0; +}; + +/** + * Return whether this Long is less than or equal to the other. + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} whether this Long is less than or equal to the other. + */ +Long.prototype.lessThanOrEqual = function(other) { + return this.compare(other) <= 0; +}; + +/** + * Return whether this Long is greater than the other. + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} whether this Long is greater than the other. + */ +Long.prototype.greaterThan = function(other) { + return this.compare(other) > 0; +}; + +/** + * Return whether this Long is greater than or equal to the other. + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} whether this Long is greater than or equal to the other. + */ +Long.prototype.greaterThanOrEqual = function(other) { + return this.compare(other) >= 0; +}; + +/** + * Compares this Long with the given one. + * + * @method + * @param {Long} other Long to compare against. + * @return {boolean} 0 if they are the same, 1 if the this is greater, and -1 if the given one is greater. + */ +Long.prototype.compare = function(other) { + if (this.equals(other)) { + return 0; + } + + var thisNeg = this.isNegative(); + var otherNeg = other.isNegative(); + if (thisNeg && !otherNeg) { + return -1; + } + if (!thisNeg && otherNeg) { + return 1; + } + + // at this point, the signs are the same, so subtraction will not overflow + if (this.subtract(other).isNegative()) { + return -1; + } else { + return 1; + } +}; + +/** + * The negation of this value. + * + * @method + * @return {Long} the negation of this value. + */ +Long.prototype.negate = function() { + if (this.equals(Long.MIN_VALUE)) { + return Long.MIN_VALUE; + } else { + return this.not().add(Long.ONE); + } +}; + +/** + * Returns the sum of this and the given Long. + * + * @method + * @param {Long} other Long to add to this one. + * @return {Long} the sum of this and the given Long. + */ +Long.prototype.add = function(other) { + // Divide each number into 4 chunks of 16 bits, and then sum the chunks. + + var a48 = this.high_ >>> 16; + var a32 = this.high_ & 0xffff; + var a16 = this.low_ >>> 16; + var a00 = this.low_ & 0xffff; + + var b48 = other.high_ >>> 16; + var b32 = other.high_ & 0xffff; + var b16 = other.low_ >>> 16; + var b00 = other.low_ & 0xffff; + + var c48 = 0, + c32 = 0, + c16 = 0, + c00 = 0; + c00 += a00 + b00; + c16 += c00 >>> 16; + c00 &= 0xffff; + c16 += a16 + b16; + c32 += c16 >>> 16; + c16 &= 0xffff; + c32 += a32 + b32; + c48 += c32 >>> 16; + c32 &= 0xffff; + c48 += a48 + b48; + c48 &= 0xffff; + return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); +}; + +/** + * Returns the difference of this and the given Long. + * + * @method + * @param {Long} other Long to subtract from this. + * @return {Long} the difference of this and the given Long. + */ +Long.prototype.subtract = function(other) { + return this.add(other.negate()); +}; + +/** + * Returns the product of this and the given Long. + * + * @method + * @param {Long} other Long to multiply with this. + * @return {Long} the product of this and the other. + */ +Long.prototype.multiply = function(other) { + if (this.isZero()) { + return Long.ZERO; + } else if (other.isZero()) { + return Long.ZERO; + } + + if (this.equals(Long.MIN_VALUE)) { + return other.isOdd() ? Long.MIN_VALUE : Long.ZERO; + } else if (other.equals(Long.MIN_VALUE)) { + return this.isOdd() ? Long.MIN_VALUE : Long.ZERO; + } + + if (this.isNegative()) { + if (other.isNegative()) { + return this.negate().multiply(other.negate()); + } else { + return this.negate() + .multiply(other) + .negate(); + } + } else if (other.isNegative()) { + return this.multiply(other.negate()).negate(); + } + + // If both Longs are small, use float multiplication + if (this.lessThan(Long.TWO_PWR_24_) && other.lessThan(Long.TWO_PWR_24_)) { + return Long.fromNumber(this.toNumber() * other.toNumber()); + } + + // Divide each Long into 4 chunks of 16 bits, and then add up 4x4 products. + // We can skip products that would overflow. + + var a48 = this.high_ >>> 16; + var a32 = this.high_ & 0xffff; + var a16 = this.low_ >>> 16; + var a00 = this.low_ & 0xffff; + + var b48 = other.high_ >>> 16; + var b32 = other.high_ & 0xffff; + var b16 = other.low_ >>> 16; + var b00 = other.low_ & 0xffff; + + var c48 = 0, + c32 = 0, + c16 = 0, + c00 = 0; + c00 += a00 * b00; + c16 += c00 >>> 16; + c00 &= 0xffff; + c16 += a16 * b00; + c32 += c16 >>> 16; + c16 &= 0xffff; + c16 += a00 * b16; + c32 += c16 >>> 16; + c16 &= 0xffff; + c32 += a32 * b00; + c48 += c32 >>> 16; + c32 &= 0xffff; + c32 += a16 * b16; + c48 += c32 >>> 16; + c32 &= 0xffff; + c32 += a00 * b32; + c48 += c32 >>> 16; + c32 &= 0xffff; + c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; + c48 &= 0xffff; + return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); +}; + +/** + * Returns this Long divided by the given one. + * + * @method + * @param {Long} other Long by which to divide. + * @return {Long} this Long divided by the given one. + */ +Long.prototype.div = function(other) { + if (other.isZero()) { + throw Error('division by zero'); + } else if (this.isZero()) { + return Long.ZERO; + } + + if (this.equals(Long.MIN_VALUE)) { + if (other.equals(Long.ONE) || other.equals(Long.NEG_ONE)) { + return Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE + } else if (other.equals(Long.MIN_VALUE)) { + return Long.ONE; + } else { + // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. + var halfThis = this.shiftRight(1); + var approx = halfThis.div(other).shiftLeft(1); + if (approx.equals(Long.ZERO)) { + return other.isNegative() ? Long.ONE : Long.NEG_ONE; + } else { + var rem = this.subtract(other.multiply(approx)); + var result = approx.add(rem.div(other)); + return result; + } + } + } else if (other.equals(Long.MIN_VALUE)) { + return Long.ZERO; + } + + if (this.isNegative()) { + if (other.isNegative()) { + return this.negate().div(other.negate()); + } else { + return this.negate() + .div(other) + .negate(); + } + } else if (other.isNegative()) { + return this.div(other.negate()).negate(); + } + + // Repeat the following until the remainder is less than other: find a + // floating-point that approximates remainder / other *from below*, add this + // into the result, and subtract it from the remainder. It is critical that + // the approximate value is less than or equal to the real value so that the + // remainder never becomes negative. + var res = Long.ZERO; + rem = this; + while (rem.greaterThanOrEqual(other)) { + // Approximate the result of division. This may be a little greater or + // smaller than the actual value. + approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); + + // We will tweak the approximate result by changing it in the 48-th digit or + // the smallest non-fractional digit, whichever is larger. + var log2 = Math.ceil(Math.log(approx) / Math.LN2); + var delta = log2 <= 48 ? 1 : Math.pow(2, log2 - 48); + + // Decrease the approximation until it is smaller than the remainder. Note + // that if it is too large, the product overflows and is negative. + var approxRes = Long.fromNumber(approx); + var approxRem = approxRes.multiply(other); + while (approxRem.isNegative() || approxRem.greaterThan(rem)) { + approx -= delta; + approxRes = Long.fromNumber(approx); + approxRem = approxRes.multiply(other); + } + + // We know the answer can't be zero... and actually, zero would cause + // infinite recursion since we would make no progress. + if (approxRes.isZero()) { + approxRes = Long.ONE; + } + + res = res.add(approxRes); + rem = rem.subtract(approxRem); + } + return res; +}; + +/** + * Returns this Long modulo the given one. + * + * @method + * @param {Long} other Long by which to mod. + * @return {Long} this Long modulo the given one. + */ +Long.prototype.modulo = function(other) { + return this.subtract(this.div(other).multiply(other)); +}; + +/** + * The bitwise-NOT of this value. + * + * @method + * @return {Long} the bitwise-NOT of this value. + */ +Long.prototype.not = function() { + return Long.fromBits(~this.low_, ~this.high_); +}; + +/** + * Returns the bitwise-AND of this Long and the given one. + * + * @method + * @param {Long} other the Long with which to AND. + * @return {Long} the bitwise-AND of this and the other. + */ +Long.prototype.and = function(other) { + return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_); +}; + +/** + * Returns the bitwise-OR of this Long and the given one. + * + * @method + * @param {Long} other the Long with which to OR. + * @return {Long} the bitwise-OR of this and the other. + */ +Long.prototype.or = function(other) { + return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_); +}; + +/** + * Returns the bitwise-XOR of this Long and the given one. + * + * @method + * @param {Long} other the Long with which to XOR. + * @return {Long} the bitwise-XOR of this and the other. + */ +Long.prototype.xor = function(other) { + return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_); +}; + +/** + * Returns this Long with bits shifted to the left by the given amount. + * + * @method + * @param {number} numBits the number of bits by which to shift. + * @return {Long} this shifted to the left by the given amount. + */ +Long.prototype.shiftLeft = function(numBits) { + numBits &= 63; + if (numBits === 0) { + return this; + } else { + var low = this.low_; + if (numBits < 32) { + var high = this.high_; + return Long.fromBits(low << numBits, (high << numBits) | (low >>> (32 - numBits))); + } else { + return Long.fromBits(0, low << (numBits - 32)); + } + } +}; + +/** + * Returns this Long with bits shifted to the right by the given amount. + * + * @method + * @param {number} numBits the number of bits by which to shift. + * @return {Long} this shifted to the right by the given amount. + */ +Long.prototype.shiftRight = function(numBits) { + numBits &= 63; + if (numBits === 0) { + return this; + } else { + var high = this.high_; + if (numBits < 32) { + var low = this.low_; + return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >> numBits); + } else { + return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1); + } + } +}; + +/** + * Returns this Long with bits shifted to the right by the given amount, with the new top bits matching the current sign bit. + * + * @method + * @param {number} numBits the number of bits by which to shift. + * @return {Long} this shifted to the right by the given amount, with zeros placed into the new leading bits. + */ +Long.prototype.shiftRightUnsigned = function(numBits) { + numBits &= 63; + if (numBits === 0) { + return this; + } else { + var high = this.high_; + if (numBits < 32) { + var low = this.low_; + return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits); + } else if (numBits === 32) { + return Long.fromBits(high, 0); + } else { + return Long.fromBits(high >>> (numBits - 32), 0); + } + } +}; + +/** + * Returns a Long representing the given (32-bit) integer value. + * + * @method + * @param {number} value the 32-bit integer in question. + * @return {Long} the corresponding Long value. + */ +Long.fromInt = function(value) { + if (-128 <= value && value < 128) { + var cachedObj = Long.INT_CACHE_[value]; + if (cachedObj) { + return cachedObj; + } + } + + var obj = new Long(value | 0, value < 0 ? -1 : 0); + if (-128 <= value && value < 128) { + Long.INT_CACHE_[value] = obj; + } + return obj; +}; + +/** + * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned. + * + * @method + * @param {number} value the number in question. + * @return {Long} the corresponding Long value. + */ +Long.fromNumber = function(value) { + if (isNaN(value) || !isFinite(value)) { + return Long.ZERO; + } else if (value <= -Long.TWO_PWR_63_DBL_) { + return Long.MIN_VALUE; + } else if (value + 1 >= Long.TWO_PWR_63_DBL_) { + return Long.MAX_VALUE; + } else if (value < 0) { + return Long.fromNumber(-value).negate(); + } else { + return new Long((value % Long.TWO_PWR_32_DBL_) | 0, (value / Long.TWO_PWR_32_DBL_) | 0); + } +}; + +/** + * Returns a Long representing the 64-bit integer that comes by concatenating the given high and low bits. Each is assumed to use 32 bits. + * + * @method + * @param {number} lowBits the low 32-bits. + * @param {number} highBits the high 32-bits. + * @return {Long} the corresponding Long value. + */ +Long.fromBits = function(lowBits, highBits) { + return new Long(lowBits, highBits); +}; + +/** + * Returns a Long representation of the given string, written using the given radix. + * + * @method + * @param {string} str the textual representation of the Long. + * @param {number} opt_radix the radix in which the text is written. + * @return {Long} the corresponding Long value. + */ +Long.fromString = function(str, opt_radix) { + if (str.length === 0) { + throw Error('number format error: empty string'); + } + + var radix = opt_radix || 10; + if (radix < 2 || 36 < radix) { + throw Error('radix out of range: ' + radix); + } + + if (str.charAt(0) === '-') { + return Long.fromString(str.substring(1), radix).negate(); + } else if (str.indexOf('-') >= 0) { + throw Error('number format error: interior "-" character: ' + str); + } + + // Do several (8) digits each time through the loop, so as to + // minimize the calls to the very expensive emulated div. + var radixToPower = Long.fromNumber(Math.pow(radix, 8)); + + var result = Long.ZERO; + for (var i = 0; i < str.length; i += 8) { + var size = Math.min(8, str.length - i); + var value = parseInt(str.substring(i, i + size), radix); + if (size < 8) { + var power = Long.fromNumber(Math.pow(radix, size)); + result = result.multiply(power).add(Long.fromNumber(value)); + } else { + result = result.multiply(radixToPower); + result = result.add(Long.fromNumber(value)); + } + } + return result; +}; + +// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the +// from* methods on which they depend. + +/** + * A cache of the Long representations of small integer values. + * @type {Object} + * @ignore + */ +Long.INT_CACHE_ = {}; + +// NOTE: the compiler should inline these constant values below and then remove +// these variables, so there should be no runtime penalty for these. + +/** + * Number used repeated below in calculations. This must appear before the + * first call to any from* function below. + * @type {number} + * @ignore + */ +Long.TWO_PWR_16_DBL_ = 1 << 16; + +/** + * @type {number} + * @ignore + */ +Long.TWO_PWR_24_DBL_ = 1 << 24; + +/** + * @type {number} + * @ignore + */ +Long.TWO_PWR_32_DBL_ = Long.TWO_PWR_16_DBL_ * Long.TWO_PWR_16_DBL_; + +/** + * @type {number} + * @ignore + */ +Long.TWO_PWR_31_DBL_ = Long.TWO_PWR_32_DBL_ / 2; + +/** + * @type {number} + * @ignore + */ +Long.TWO_PWR_48_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_16_DBL_; + +/** + * @type {number} + * @ignore + */ +Long.TWO_PWR_64_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_32_DBL_; + +/** + * @type {number} + * @ignore + */ +Long.TWO_PWR_63_DBL_ = Long.TWO_PWR_64_DBL_ / 2; + +/** @type {Long} */ +Long.ZERO = Long.fromInt(0); + +/** @type {Long} */ +Long.ONE = Long.fromInt(1); + +/** @type {Long} */ +Long.NEG_ONE = Long.fromInt(-1); + +/** @type {Long} */ +Long.MAX_VALUE = Long.fromBits(0xffffffff | 0, 0x7fffffff | 0); + +/** @type {Long} */ +Long.MIN_VALUE = Long.fromBits(0, 0x80000000 | 0); + +/** + * @type {Long} + * @ignore + */ +Long.TWO_PWR_24_ = Long.fromInt(1 << 24); + +/** + * Expose. + */ +module.exports = Long; +module.exports.Long = Long; |